On Annular Bound For The Zeros Of A Polynomial∗
نویسنده
چکیده
In this paper we present some results on the annular bound for the zeros of a polynomial based on the identities related to the generalized Fibonacci sequence with arbitrary initial condition. Several recently reported results in the same direction are special cases of our results.
منابع مشابه
Annular Bounds for Polynomial Zeros and Schur Stability of Difference Equations
We investigate the monic complex-coefficient polynomial of degree n, f z : z n a n−1 z n−1 · · · a 0 in the complex variable z and obtain a new annular bound for the zeros of f z, which is sharper than the previous results and has clear advantages in judging the Schur stability of difference equations. In addition, examples are given to illustrate the theoretical result.
متن کاملOn the $s^{th}$ derivative of a polynomial
For every $1leq s< n$, the $s^{th}$ derivative of a polynomial $P(z)$ of degree $n$ is a polynomial $P^{(s)}(z)$ whose degree is $(n-s)$. This paper presents a result which gives generalizations of some inequalities regarding the $s^{th}$ derivative of a polynomial having zeros outside a circle. Besides, our result gives interesting refinements of some well-known results.
متن کاملOn the polar derivative of a polynomial
For a polynomial p(z) of degree n, having all zeros in |z|< k, k< 1, Dewan et al [K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009) 807-815] obtained inequality between the polar derivative of p(z) and maximum modulus of p(z). In this paper we improve and extend the above inequality. Our result generalizes certai...
متن کاملInequalities for the polar derivative of a polynomial with $S$-fold zeros at the origin
Let $p(z)$ be a polynomial of degree $n$ and for a complex number $alpha$, let $D_{alpha}p(z)=np(z)+(alpha-z)p'(z)$ denote the polar derivative of the polynomial p(z) with respect to $alpha$. Dewan et al proved that if $p(z)$ has all its zeros in $|z| leq k, (kleq 1),$ with $s$-fold zeros at the origin then for every $alphainmathbb{C}$ with $|alpha|geq k$, begin{align*} max_{|z|=...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کامل